数学考试要注重计算,很多孩子成绩丢分在计算上,解题步骤没有问题,但是计算的过程中出现马虎的问题,导致丢分,影响整体成绩。下面是小编整理的数学七年级下册第八章知识点,仅供参考希望能够帮助到大家。
由几个一次方程组成并且含有两个未知数的方程组,叫二元一次方程组。
注意:二元一次方程组不一定由两个二元一次方程合在一起:方程可以超过两个,有的方程可以只有一元(一元方程在这里也可看作另一未知数系数为 0 的二元方程)。
(2)二元一次方程组的解
二元一次方程组的解必须满足方程组中的每一个方程,同时它也必须是一个数对,而不能是一个数。
3)二元一次方程组的解法
●a.代入消元法
通过等量代换,消去方程组中的一个未知数,使二元一次方程组转化为一元一次方程,从而求得一个未知数的值,然后再求出被消去未知数的值,从而确定原方程组的解的方法。
步骤:
①从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数,例如 y,用另一个未知数如 x 的代数式表示出来,即写成 y = ax + b 的形式;
② y = ax + b 代入另一个方程中,消去 y ,得到一个关于 x 的一元一次方程;
③解这个一元一次方程,求出 x 的值;
④回代求解:把求得的 x 的值代入 y = ax + b 中求出 y 的值,从而得出方程组的解。
●b.加减消元法
加减法是消元法的一种,也是解二元一次方程组的基本方法之一。加减法不仅在解二元一次方程组中适用,也是今后解其他方程(组)经常用到的方法。
步骤:
①变换系数:把一个方程或者两个方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数互为相反数或相等;
②加减消元:把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;
③解这个一元一次方程,求得一个未知数的值;
④回代:将求出的未知数的值代入原方程组中,求出另一个未知数的值。
2、当某一未知数的系数互为相反数时,用加法消元;当某一未知数的系数相等时,用减法消元;
3、某一未知数系数成倍数关系时,直接对一个方程变形,使其系数互为相反数或相等,再用加减消元求解;
4、当相同的未知数的系数都不相同时,找出某一个未知数的系数的最小公倍数,同时对两个方程进行变形,转化为系数的绝对值相同,再用加减消元求解。
二元一次方程的应用
数学来源于生活又服务于生活,我们把生活实际中的问题,用设未知数的方法用二元一次方程来刻画,就把实际问题,转化成了数学问题,这种解题就是数学中的建模思想,它能化难为易化抽象为具体,也是我们学习方程的重点。
列方程组与列一元一次方程基本类似,只不过列二元一次方程组解应用题时,应从题目中找出两个独立的相等关系,根据这两个相等关系列方程组求解。尤其是在七年级没学好一元一次方程的同学,需要及时有效的补缺。
列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系。
所列方程必须满足:
(1) 方程两边表示的是同类量;
(3) 方程两边的数值要相等。
(2)设未知数:可直接设元,也可间接设元
(4)列方程组:根据题目中能表示全部含义的等量关系列出方程,并组成方程组
(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。这类问题比较直观,画线段,用图便于理解与分析。
(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。这类问题也比较直观,因而也画线段图帮助理解与分析。
(3)航行问题:
注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。
2、利润问题:
(4)实际售价=标价×打折率;
注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。打几折就是按标价的十分之几或百分之几十销售。
(例如八折就是按标价的十分之八即五分之四或者百分之八十)
(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去
(3)一般来说,设几个未知数就应该列出几个方程并组成方程组。
③注意用方程组解应用题的过程中单位的书写,设未知数和写答案都要带单位,列方程组与解方程组时,不要带单位;
在学习过程中,要准确地掌握抽象概念的本质含义,了解从实际模型中抽象为理论的演变过程。对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。
1.上课认真听讲是打好数学基础的重要环节,也是牢固掌握基础知识的根本途径。
2.在解决问题时,我们可以试着用不同的方法,如假设法,特殊值法,整体法。
主要是指养成思考的习惯,学会思考的方法。独立思考是学习数学必须具备的能力。
同学们在学习时,要边听(课)边想,边看(书)边想,边做(题)边想,通过自己积极思考,深刻理解数学知识,归纳总结数学规律,灵活解决数学问题,这样才能把老师讲的、课本上写的变成自己的知识。
(1)线段公理:所有连接两点的线中,线段最短。也可简单说成:两点之间线段最短。
(3)线段的中点到两端点的距离相等。
上一篇:七年级下册数学苏教版第八章知识点
下一篇:七年级下册数学第九章知识点苏教版