在备战高考的路上,高三的每一次考试都是非常重要的,是对你的复习成果的一个验收,也可以体现出你对知识把握的不足。下面是小编为大家整理的关于高考数学各题型答题技巧,希望对您有所帮助。欢迎大家阅读参考学习!
1、解题路线图
①不同角化同角
②降幂扩角
③化f(x)=Asin(ωx+φ)+h
④结合性质求解。
2、构建答题模板
①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sinx,y=cosx的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
解三角形问题
1、解题路线图
(2)①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2、构建答题模板
①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
数列的通项、求和问题
1、解题路线图
①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2、构建答题模板
①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
1、解题路线图
①建立坐标系,并用坐标来表示向量。
②空间向量的坐标运算。
2、构建答题模板
④求夹角:计算向量的夹角。
1、解题路线图
①设方程。
②解系数。
③得结论。
2、构建答题模板
解析几何中的探索性问题
1、解题路线图
①一般先假设这种情况成立(点存在、直线存在、位置关系存在等)
②将上面的假设代入已知条件求解。
③得出结论。
2、构建答题模板
①先假定:假设结论成立。
③下结论:若推出合理结果,经验证成立则肯。定假设;若推出矛盾则否定假设。
④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。
离散型随机变量的均值与方差
1、解题路线图
2、构建答题模板
④计算:计算随机变量取每一个值的概率。
⑤列表:列出分布列。
函数的单调性、极值、最值问题
1、解题路线图
(1)①先对函数求导;②计算出某一点的斜率;③得出切线方程。
(2)①先对函数求导;②谈论导数的正负性;③列表观察原函数值;④得到原函数的单调区间和极值。
2、构建答题模板
①求导数:求f(x)的导数f′(x)。(注意f(x)的定义域)
③列表格:利用f′(x)=0的根将f(x)定义域分成若干个小开区间,并列出表格。
⑤再回顾:对需讨论根的大小问题要特殊注意,另外观察f(x)的间断点及步骤规范性。
上一篇:2021高考数学立体几何答题技巧
下一篇:高考数学五大解题思路